Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli.
نویسندگان
چکیده
The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional beta-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the beta-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.
منابع مشابه
Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks.
Pseudomonas putida KT2440 is capable of producing medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when grown on unrelated carbon sources during nutrient limitation. Transcription levels of genes putatively involved in PHA biosynthesis were assessed by quantitative real-time PCR (qRT-PCR) in P. putida grown on glycerol as a sole carbon source. The results showed that two genes, phaG and the...
متن کاملExpression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae.
Complementation analysis of a polyhydroxyalkanoate (PHA)-negative mutant of Aeromonas caviae proved that ORF3 in the pha locus (a 402-bp gene located downstream of the PHA synthase gene) participates in PHA biosynthesis on alkanoic acids, and the ORF3 gene is here referred to as phaJ(Ac). Escherichia coli BL21(DE3) carrying phaJ(Ac). under the control of the T7 promoter overexpressed enoyl coen...
متن کاملNew FadB homologous enzymes and their use in enhanced biosynthesis of medium-chain-length polyhydroxyalkanoates in FadB mutant Escherichia coli.
Recombinant Escherichia coli harboring the medium-chain-length (MCL) polyhydroxyalkanoate (PHA) synthase gene has been shown to accumulate MCL-PHAs from fatty acids when FadB is inactive. However, the enzymes in fadB mutant E. coli responsible for channeling the beta-oxidation intermediates to PHA biosynthesis have not been fully elucidated. Only recently, two enzymes encoded by yfcX and maoC h...
متن کاملSubstrate specificities of peroxisomal members of short-chain alcohol dehydrogenase superfamily: expression and characterization of dehydrogenase part of Candida tropicalis multifunctional enzyme.
In addition to several other enzymes, the short-chain alcohol dehydrogenase superfamily includes a group of peroxisomal multifunctional enzymes involved in fatty acid and cholesterol side-chain beta-oxidation. Mammalian peroxisomal multifunctional enzyme type 2 (perMFE-2) is a 2-enoyl-CoA hydratase-2/(R)-3-hydroxyacyl-CoA dehydrogenase. As has been shown previously, perMFE-2 hydrates (24E)-3alp...
متن کاملEstablishment of a metabolic pathway to introduce the 3-hydroxyhexanoate unit into LA-based polyesters via a reverse reaction of β-oxidation in Escherichia coli LS5218
New lactate (LA)-based terpolymers, P[LA-co-3-hydroxybutyrate (3HB)-co-3-hydroxyhexananoate (3HHx)]s, were produced in recombinant Escherichia coli LS5218 harboring three genes encoding LA-polymerizing enzyme (LPE), propionyl-coenzyme A (CoA) transferase (PCT) and (R)-specific enoyl-CoA hydratase (PhaJ4). When the recombinant LS5218 was grown on glucose with the feeding of butyrate, 3HB-CoA and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 185 18 شماره
صفحات -
تاریخ انتشار 2003